Quantum neural networks (QNNs): inherently fuzzy feedforward neural networks

نویسندگان

  • Gopathy Purushothaman
  • Nicolaos B. Karayiannis
چکیده

This paper introduces quantum neural networks (QNNs), a class of feedforward neural networks (FFNNs) inherently capable of estimating the structure of a feature space in the form of fuzzy sets. The hidden units of these networks develop quantized representations of the sample information provided by the training data set in various graded levels of certainty. Unlike other approaches attempting to merge fuzzy logic and neural networks, QNNs can be used in pattern classification problems without any restricting assumptions such as the availability of a priori knowledge or desired membership profile, convexity of classes, a limited number of classes, etc. Experimental results presented here show that QNNs are capable of recognizing structures in data, a property that conventional FFNNs with sigmoidal hidden units lack.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram

This paper presents the results of an experimental study that evaluated the ability of quantum neural networks (QNNs) to capture and quantify uncertainty in data and compared their performance with that of conventional feedforward neural networks (FFNNs). In this work, QNNs and FFNNs were trained to classify short segments of epileptic seizures in neonatal EEG. The experiments revealed signific...

متن کامل

Numerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network

In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...

متن کامل

Numerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network

In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 1997